Dr. Marques Sophie Office 519 Number theory

Spring Semester 2013 marques@cims.nyu.edu

Problem Set
$$\#5$$

Let prove first a result extending the one of \mathbb{Z} , if $\mathfrak{a} = \prod_i \mathfrak{p}_i^{e_i}$ and $\mathfrak{b} = \prod_i \mathfrak{p}_i^{f_i}$ where the $\mathfrak{p}'s$ are maximal ideal, then

$$\mathfrak{a} + \mathfrak{b} = \prod_{i} \mathfrak{p}_{i}^{min(e_{i},f_{i})} \text{ and } \mathfrak{a} \cap \mathfrak{b} = \prod_{i} \mathfrak{p}_{i}^{max(e_{i},f_{i})}.$$

Note that $\mathfrak{a} + \mathfrak{b}$ is the smallest ideal containing \mathfrak{a} and \mathfrak{b} and $\mathfrak{a} \cap \mathfrak{b}$ is the smallest ideal contained in \mathfrak{a} and \mathfrak{b} . The results follows then from the fact, that $\prod_i \mathfrak{p}_i^{e_i} \subseteq \prod_i \mathfrak{p}_i^{f_i}$ if and only if $e_i \ge f_i$, for all i.

Exercise 5 p 23 of [N]:

The quotient ring \mathcal{O}/\mathfrak{a} of a Dedekind domain by an ideal $\mathfrak{a} \neq 0$ is a principal ideal domain.

Solution:

By Chinese remainder theorem, it is enough to prove the result for \mathfrak{a} of the form \mathfrak{p}^n where \mathfrak{p} is a prime ideal. The ideal of \mathcal{O}/\mathfrak{a} are in bijection with the ideals of \mathcal{O} dividing \mathfrak{p}^n , that is \mathfrak{p}^i for i = 0, ..., n. So the proper ideal of \mathcal{O}/\mathfrak{a} are exactly $\mathfrak{p}/\mathfrak{p}^n, ..., \mathfrak{p}/\mathfrak{p}^n$. Let now $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$. Then, $\mathfrak{p}^{\mu} = (\pi^{\mu}) + \mathfrak{p}^n$ for any $\mu = \{1, ..., n\}$, since they have the same prime factorization (see above for prime factorization of the sum). So, that we have the result.

Exercise 6 p 23 of [N]

Every ideal of a Dedekind domain can be generated by two elements.

Solution:

Let \mathfrak{a} be a nonzero ideal of a Dedekind domain \mathcal{O} . Then, \mathcal{O}/\mathfrak{a} is a PID, in particular, for $a \neq 0$ in \dashv we have that $(a)/\mathfrak{a}$ is principal so that there is $b \in \mathcal{O}$ such that $(a)/\mathfrak{a} = (b)$ so that $(a) + (b) = \mathfrak{a}$.

Direct proof: Let $\mathbf{a} = \prod_i \mathbf{p}_i^{f_i}$ as a finite product and choose $a \in A$ with $v_{\mathbf{p}_i}(a) = f_i$, so that $(a) = I \prod_i \mathbf{q}_i^{e_i}$, also a finite product where the \mathbf{q}_i are different from all \mathbf{p}_i . Choose $b \in A$ with $v_{\mathbf{p}_i}(b) = f_i + 1$ and $v_{\mathbf{q}_i} = 0$ (always possible by chinese remainder theorem). Then, I = (a) + (b) (see above for prime factorization of the sum).

Exercise 3 p 28 of [N] (Minkowski's Theorem on Linear forms). Let

$$L_i(x_1, ..., x_n) = \sum_{j=1}^n a_{i,j} x_j, \ i = 1, ..., n$$

be a real form such that $det(a_{i,j})|$, and let $c_1, ..., c_n$ be positive real number such that $c_1, ..., c_n > |det(a_{i,j})|$. Show that there exist integers $m_1, ..., m_n \in \mathbb{Z}$ such that

$$|L_i(m_1, ..., m_n)| < c_i, \ i = 1, ..., n$$

Solution:

Let $\mathcal{C} = \{x \in \mathbb{R}^n : |\sum a_{i,j}x_j| < c_j, \ 1 \le i \le n\}.$

Note that $|\sum a_{i,j}x_j| < c_j$, $1 \le i \le n$ is equivalent to Ax = c where $x = (x_1, ..., x_n)^t$ and $c = (c_1, ..., c_n)^t$. Consider the lattice $A\mathbb{Z}^n = a_1\mathbb{Z} + ... + a_n\mathbb{Z}$ where the a's are the columns of A linearly independent since $det(A) \ne 0$. Then $det(A\mathbb{Z}^n) = |det(A)|$, so that $vol(\mathcal{C}) = (2^n c_1 ... c_n)/|det(A)|$. Now, consider the lattice $\Gamma = \mathbb{Z}^n$, then $2^n vol(\Gamma) = 2^n < vol(\mathcal{C})$ and by Minkowski's lattice point theorem, there is $x \in \mathbb{Z}^n$ nonzero with $x \in \mathcal{C}$.